Table of Contents

PREFACE		iii
CHAPTER 1.	BASIC CONSIDERATIONS	
Section I.	Definitions and Classifications	1-1
II.	Pile Selection	1-4
CHAPTER 2.	MATERIALS	
Section I.	Selection of Materials	2-1
II.	Timber Piles	2-1
III.	Steel Piles	2-5
IV.	Precast Concrete Piles	2-7
V.	Cast-in-Place Piles	2-12
VI.	Sheet Piles	2-13
CHAPTER 3.	PILE-DRIVING EQUIPMENT	
Section I.	Standard Pile-Driving Equipment	3-1
II.	Expedient and Floating Pile-Driving Equipment	3-15
III.	Other Pile-Driving Equipment	3-22
CHAPTER 4.	PILE INSTALLATION OPERATIONS	
Section I.	Preparation of Piles for Driving	4-1
II.	Construction Procedures	4-8
III.	Preparation and Use of Piles	4-32
IV.	Supervision	4-34
CHAPTER 5.	ALLOWABLE LOADS ON A SINGLE PILE	
Section I.	Basics	5-1
II.	Structural Designs	5-2
III.	Dynamic Formulas	5-4
IV.	Static Formulas	5-6
v	Pile I and Tests	5-9

CHAPTER 6.	PILE FOUNDATIONS	
Section I.	Group Behavior	6-1
II.	Ground Conditions	6-2
III.	Design Examples	6-11
CHAPTER 7.	DISTRIBUTION OF LOADS ON PILE GROUPS	
Section I.	Design Loads	7-1
II.	Vertical Pile Groups	7-1
III.	Vertical and Batter Pile Groups	7-6
CHAPTER 8.	MAINTENANCE AND REHABILITATION	
Section I.	Timber Piles	8-1
II.	Steel Piles	8-6
III.	Concrete Piles	8-8
IV.	Rehabilitation	8-8
APPENDIX	WOODS USED AS PILES	A-1
EFERENCES	Reference	es-1
GLOSSARY		
Section I.	Definitions Glossa	ry-1
II.	Acronyms, Abbreviations, and Symbols Glossa	ry-6
INDEX	Ind	o v -1

List of Illustrations

Figure 1-1	Pile foundation for structure support	1-2
1-2	Sheet pile protecting a bridge pier	
1-3	Piles in a waterfront structure	1-3
1-4	Friction piles	1-3
1-5	End-bearing piles	1-4
1-6	Batter piles	1-4
1.7	Compaction piles	1-5
2-1	Typical timber bearing pile	2-3
2-2	Steel rails welded to form piles	2-6
2-3	Designs of precast concrete piles	2-8
2-4	Layout of small casting yard	2-9
2-5	Wooden forms for casting concrete piles	2-9
2-6	Handling precast concrete piles	2-10
2-7	Precast concrete pile design charts	2-11
2-8	Blocking of stacked concrete piles	2-12
2-9	Cross-sectional views of steel sheet piling	2-15
2-10	Types of timber sheet piles	2-16
2-11	Rail and plank sheet piling	2-17
2-12	Designs of concrete sheet piles	2-18/1
3-1	Crane with standard pile-driving attachments	3-2
3-2	Pile driver lead adapter	3-3
3-3	Steel-frame, skid-mounted pile driver	3-4
3-4	Aligning leads of the skid-mounted pile driver	3-5
3-5	Drop hammer and pile cap placed in leads	3-7
3-6	Details of expedient log hammer	3-8
3-7	Pneumatic or steam pile-driving hammers	3-9
3-8	Types of pile hammers	3-11
3-9	Special cap (helmet) for steel pile	3-12
3-10	Pile-driving leads with bottom brace	3-13
3-11	Bottom braces for adjusting batter	3-14
3-12	Expedient wood-frame, skid-mounted pile driver	3-15
3-13	Expedient wood-frame, skid-mounted pile driver	
	using standard leads	3-16
3-14	Expedient timber pile-driving rig using	
	dimensioned lumber	
3-15	Expedient tripod pile driver	
3-16	Design features of the tripod pile driver	
3-17	Expedient pile driver made of constructed	
	welded steel angles	3-20
3-18	Crane-shovel with pile-driving attachment	

Figure 3-19	Skid-mounted pile driver on a 5-foot \times 12-foot barge assembly	3-22
3-20	Jet pipe assembly	
3-21	Improvised devices for aligning hammers	3-23
0 = 2	without leads	3-25
4-1	Steel shoes for timber piles	
4-2	Methods of splicing timber piles	
4-3	Driving points for H-piles	4-3 4-4
4-4	Driving points for pipe piles	
4-5	Butt-welded splice, welding clamps, and	4.0
	guide for scarfing	4-6
4-6	Splices of H-piles and pipe piles	4-7
4-7	Basic steps in setting and driving piles	
4-8	Types of damage to timber piles from overdriving	
4-9	Method of guying steel piles	4-12
4-10	Batter of a pile	4-14
4-11	Use of block and tackle to realign pile	
4-12	Breaching obstructions	4-17
4-13	Jetting pile by pipes and hoses	4-18
4-14	Use of jet pipes near pile tip	4-19
4-15	Precast concrete piles with internal jetting pipes	4-20
4-16	Realigning piles by jetting	4-21
4-17	Wire rope guideline to position piles	4-23
4-18	Floating template for positioning piles	4-24
4-19	Aligning frame for pile bent	4-26
4-20	Aligning and capping steel pile bents	4-27
4-21	Approximate shape of thawed hole in sand-silt	
	soil after 1½ hours of steam jetting	4-28
4-22	Piles driven through 3 feet of active zone to	
	a depth of 13 feet after thawing	4-29
4-23	Cutting timber pile bent to final height	4-31
4-24	Procedure for placing cast-in-ground	4 00
4.05	Concrete piles	4-33
4-25	Procedure for placing shell-type, cast-in-place	4 95
4-26	Concrete piles Hand signals for pile-driving operations	4-35 4-37
5-1	Unsupported length	5-3
5-2	Measurement of pile set in field	
5-3	Static analysis of piles in cohesive soils	5-7
5-4	Static analysis of piles in cohensionless soils	5-8
5-5	Typical pile load test setup	5-9
5-6	Typical load-deflection curve	5-10
5-7	Interpretation of CRP test results	5-11
5-8	Effects of group action on size of stressed zone	5-12
5-9	Distinction between rigid and flexible pile or pier	5-13
5-10	Ultimate lateral resistance of rigid piles in clay	5-14
5-11	Ultimate lateral resistance of rigid piles in sand	5-15

6-1	Estimated settlement of pile groups in sand	6-4
6-2	Uplift capacity of pile group	6-4
6-3	Block failure of piles in clay	6-5
6-4	Approximate distribution of stress beneath pile	
	foundations	6-6
6-5	Pile action on the soil	6-7
6-6	Analysis of drag on piles in clay	6-9
6-7	Forces acting on and supporting capacity of	
	piling in permafrost	6-10
6-8	Design of pile foundation in dense sand underlain	
	by clay	6-13
6-9	Design of friction pile foundation in a deep	
	deposit of clay	6-16
7-1	Pile group with resultant passing through center	
	of gravity	7-2
7-2	Pile group with resultant not at center of gravity	7-3
7-3	Pile bent	7-5
7-4	Pile reaction in a pile group composed of batter	
	and vertical piles	7-8
7-5	Relationship of pile load components	7-9
7-6	Force polygon	7-10
8-1	Decay of untreated timber pile	8-2
8-2	Marine borer damage to timber pile	8-3
8-3	Brush application of preservative to cutoff ends	8-4
8-4	Typical concrete encasements of steel piles	8-7
8-5	Timber splicing using reinforced concrete	8-10
	<u> </u>	

List of Tables

1-1	Types of bearing piles	1-6
2-1	Classification of timber piles	2-2
2-2	Working stresses for timber	2-4
2-3	Properties of steel sheet piling	2-14
3-1	Selection of diesel hammers for various sizes	
-	of piling	3-6
3-2	Properties of selected impact pile hammers	3-10
4-1	Treatment of field problems encountered during	
	pile driving	4-13
5-1	Strength or consistency of undisturbed clays	5-16
7-1	Tabular form for determining load acting on	
• •	each pile	7-6